<u>Seeing the Trees for the Forest:</u> <u>Advances in Remote Sensing</u>

Maurice LeBlanc

Forest NB Forum

March 14, 2024

Topic List

History and Context of Forest Inventories in NB

Remote Sensing Acquisition Methods

Forest Inventory Development

- Stereo Photo Interpretation
- Enhanced Forest Inventories
- Satellite Based Analysis
- Individual Tree Based Inventories

Delineation of Stands

History on New Brunswick Forest Inventories

World Leader in Innovation

Completed first Province-wide aerial stereo imagery in 1944-45

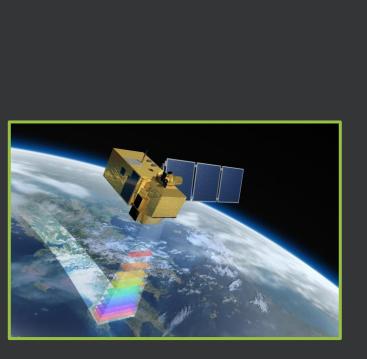
- A team of photo-interpreters mapped softwood, hardwood and mixed conditions
- The Crown Lands and Forest Act (1982)
 - Created a paradigm shift
- The installation of the Arc GIS software by ESRI at DNR was a world first
 - A complete digital forest inventory completed by 1985
- Leading Edge Geomatics Established in 2008
 - Major driver in LiDAR-based Enhanced Forest Inventories
- Management Planning Process Improvement Event 2008
 - Part of the focus was on improving forest inventory

Why Forest Inventories are Important

Forest Inventory is the Fundamental Building Block

- Land-Use and Forest Policy Decisions
- Wildlife and Conservation Areas
- Strategic Planning
- Forest Health and Wildfire Planning
- Operational Planning

Remote Sensing Acquisition Methods


Cost-Effective Options at Industrial Scales

Aerial Stereo Photos

Airborne Laser Scan - LiDAR

Aerial

Aerial Photo Interpretation

Description

- Requires full stereo coverage
 - Typically at 30cm resolution or better, 4-band
- Completed in two phases
 - Delineation of "like-areas" called stands
 - Attributing each stand with average tree characteristics
- Combine similar stands together to create strata
 - Establish ground plots to get quantitative measures at a strata-level

Aerial Photo Interpretation

Pros and Cons

Pros

- Tried and true method
- Well suited for strategic analysis (long term wood supply)
- Overall great statistical accuracy
- Good species composition data

Cons

- Fixed delineation which is virtually impossible to adjust
- Piece-work which does not scale well
- Significant lag time from image capture to final product on large projects
- Interpretation is very subjective
- Fewer and fewer interpreters around

Area-Based EFI (Enhanced Forest Inventory)

Description

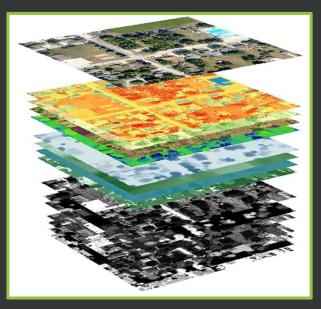
- Acquire low to medium density LiDAR (2-8ppsm)
- Create LiDAR metrics on every 20x20m cells from the point cloud
- Measure ground plots representing the range of forest conditions
- Create attribute prediction models on plot training
- Predict attributes on every cell across the entire area
 - Volume, Basal Area, stems per hectare
 - Average Height, DBH, piece size

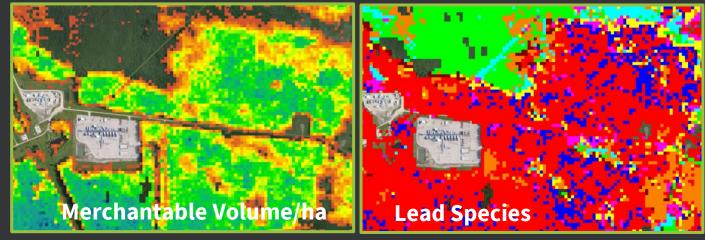
Area-Based EFI (Enhanced Forest Inventory)

Pros and Cons

Pros

- Wall-to-Wall cell-based coverage (no blind spots!)
- Provides quantitative attributes (per hectare and averages)
- Relatively quick turn-around
- Allows a "within stand" view for more detailed operational planning


Cons

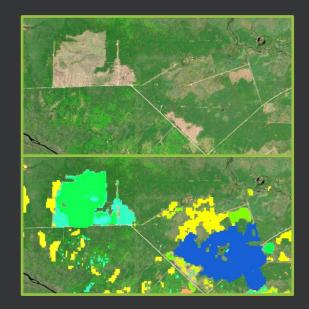

- Not cost effective at smaller scales
- Does not provide species information

Satellite Image Analysis

A Variety of Spectral, Radar, LiDAR and Other Formats

- Through a machine learning approach
 - Create a "Stack" of various sensor images
 - Supply training data (e.g. ground plots)
 - Predict attributes across the entire area (20x20m cell)
 - Volume/ha, avg DBH, Basal Area, Height
 - Can predict Species proportion

Satellite Image Analysis

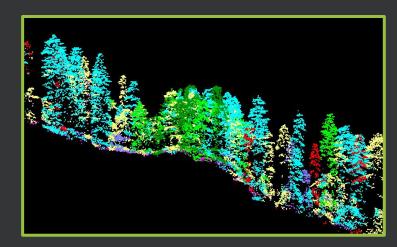

Pros and Cons

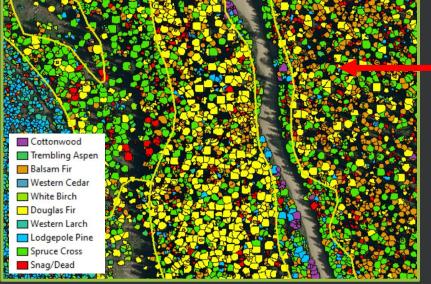
Pros

- Plentiful open-source images available
- Very cost effective
- Ability to determine species composition
- Good for identifying recent harvest (especially clearcuts)
- Great for Land Classification

Cons

 Quantitative attributes are possible but relatively low accuracy





Individual Tree Based Inventory

Description

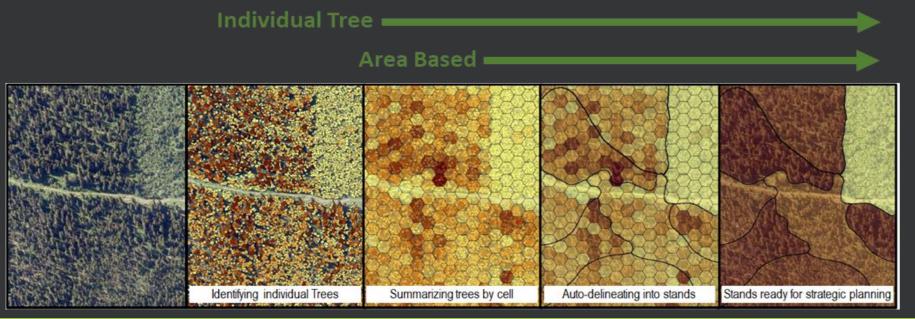
Using a higher density LiDAR (16ppsm)
Trees are individually segmented the point cloud
Species is determined on unique species signatures
Tree size is based on species, height, local density

Attribute	Value
Tree No	FL_193_8195571
Height (m)	18.5
DBH (cm)	28.8
Local Density (tph)	854
Canopy Area (m ²)	25.6
Species	Balsam Fir
Gross M Vol (m ³)	0.415
Basal Area (m ²)	0.065
No of Logs	4
Log 1 Length (m)	4.88
Log 1 Type	Saw
Log 1 Top Diameter (cm)	22.7
Log 1 Volume (m ³)	0.205
Log 2 Length (m)	4.88
Log 2 Type	Saw
Log 2 Top Diameter (cm)	17.8
Log 2 Volume (m ³)	0.145
Log 3 Length (m)	2.44
Log3 Type	Stud
Log 3 Top Diameter (cm)	14.8
Log 3 Volume (m ³)	0.43
Log 4 Length (m)	2.44
Log 4 Top Type	Pulp
Log 4 Top Diameter (cm)	10.2
Log 4 Volume (m ³)	0.022

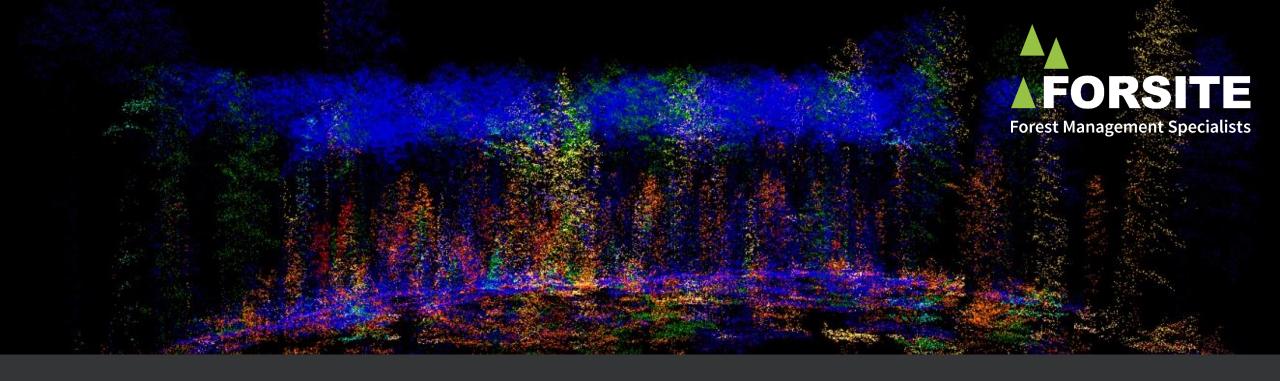
Individual Tree Based Inventory

Pros and Cons

Pros


- Very good species accuracy
- Excellent piece size metrics allowing for virtual bucking by species
- More targeted pest control treatments or selecting wildlife trees
- Generate treelists based on "actual" trees
- Separate stands into over/under-story
- Flexibility to rollup tree data at any scale

Cons


- Requires higher density LiDAR (>=16ppsm)
- Requires 20cm stereo imagery
- Not possible to find every tree

Auto-Delineation of Stands

Using Specialized Software for Aggregating "Like Cells"

Thank you!

Any Question?

Maurice LeBlanc – Solution Design Specialist , <u>mleblanc@forsite.ca</u>